

# The POES-GOES Blended Sea Surface Temperature Analysis

Andy Harris, *NOAA-CICS, UMD*Eileen Maturi, *StAR*Jo Murray, *RAL, UK* 

### The Need

- Many users of high-resolution SST data
  - − E.g. CoastWatch user base is >20,000
- Analysis products are also popular
  - Gridded, gap-free
  - Effectively a "best estimate" of SST from available sources
  - Opportunity to treat errors in the individual products – a "2<sup>nd</sup> bite at the cherry"

#### Maximize strengths – minimize weaknesses



POES IR has high spatial resolution
GOES IR has high temporal resolution
Microwave has all-weather capability
July 10, 2008
STAR Science Forum

Combine to obtain the optimal SST analysis 3

### **NESDIS** Requirements

- A blend of the "traditional" NESDIS AVHRR SST product and the newer GOES SST
  - Maximize return on investment
- Include SST data from other instruments as opportunity arises
  - Other geostationary (Meteosat-9, MT-SAT)
  - Microwave sensors
- Meet needs of user community
  - Ocean Forecasting
  - Mesoscale Oceanography (fronts, eddies)
  - Coral Reef Watch
  - CoastWatch/OceanWatch

### The Specifications

- Daily global SST analysis
  - Day and night data are treated separately
  - Uses one day of data per day...
- 0.1°×0.1° resolution
  - Sufficient to resolve fronts, eddies, etc.
  - Rossby radius is ~20 km at mid-latitudes
- Uncertainty estimates
  - For each observation type
  - Dynamic bias correction
  - For each grid-point

### Overview of Methodology

- Dynamic estimation of SST field using a recursive estimation algorithm which emulates the Kalman filter
  - See Khellah et al. (2005) [I have a .pdf]
- Preserves fine-scale structure
  - Need to avoid excessive noise
- Error estimates
  - Inflate over time if observations are absent

- A quad-tree is used as the basis for multi-scale modelling
- Need to conditionally decorrelate the subtrees branching from each node so that each can be processed independently
- To do this requires knowledge of the prior model underlying the observations (for example, simple inverse correlation with distance)
- In physical terms this corresponds to assuming that for each subtree, the influence of the external SST field can be completely represented by knowledge of SST along subtree boundary
- But useful approximation can be achieved by sub-sampling boundary

Quad-tree hierarchical structure...
...divide and conquer

(Figure taken from Fieguth et al., 1995)

### Method requires:

- Initial estimate of background field
- Prior model of SST variability
- Observations with well-characterized errors
- Definition of relationship between observational datasets (i.e. assume one or more bias terms which are spatially correlated)

### Separate basins



### Relationship between SST datasets

- RTG\_HR (thinned) No bias correction
- ACSPO SST (N-18 + METOP)
  - Day & night treated separately
- GOES-SST (GOES-11 & GOES-12)
  - Again, separate day & night)
- Each dataset is super-ob'd to analysis grid
  - Bias corrected (previous day's bias)
  - Outlier removal (based on recent estimated variability of dataset and SST analysis)
  - Error of super-ob calculated for remaining data
  - Default error assigned if <3 data points in grid cell</li>

### The Analysis Step

A simple prediction is used:

$$x(t|t-1) = x(t-1|t-1)$$

- We want to use a correlation function
  - which reflects innate variability of SST field
  - BUT, correlation function also affected by spatial distribution of measurements
  - Avoid negative definite or very close to singular (use parameterization which is known to be +ve definite)
- Multi-pass approach with range of correlation lengths
  - Estimates and errors obtained by interpolation
  - In effect, we use a mixture of stationary models to accurately mimic the effect of a non-stationary
- Method scales as Mog<sub>e</sub>(N)

### Bias Update

- GOES SST data in particular have significant (>1 K) regional biases which vary faster than we would like
- All biases are updated on a daily basis
  - Derived from (O A)
  - Damped, but not much (weights are [0.6, 0.4])
  - No dependence on view angle, etc. for AVHRR
  - For GOES, geographic location defines view angle...
- In future, will use
  - GHRSST L2P Single Sensor Error Statistic (which we generate...)
  - Physical (MAP) retrieval (should be ~unbiased) for GOES, at least...
  - Diurnal bias estimates (NWP winds + SSI → turbulence model)

#### Bias: N-17 ACSPO (Daytime) December 16, 2007



#### Bias: N-17 ACSPO (Daytime) December 21, 2007



Very similar bias pattern 5 days later

#### Bias: N-17 ACSPO (Nighttime) December 16, 2007



#### Bias: N-17 ACSPO (Nighttime) December 21, 2007



As before, similar bias pattern 5 days later

#### Bias: N-18 ACSPO (Daytime) December 16, 2007



Note more regions of warm bias in SH...

#### Bias: N-18 ACSPO (Daytime) December 21, 2007



Regions of warm bias move

#### Bias: GOES-12 (Daytime) December 16, 2007



Significant bias at edges of scan area

#### Bias: GOES-12 (Daytime) December 21, 2007



Even stronger bias pattern evident 5 days later

#### Bias: GOES-12 (Nighttime) December 16, 2007



Less prominent bias pattern at night but still significant

#### Bias: GOES-12 (Nighttime) December 21, 2007



Not as much temporal variability as daytime case

#### Bias: GOES-11 (Daytime) December 16, 2007



Some E-W (scan angle & water vapor) trend evident

#### Bias: GOES-11 (Daytime) December 21, 2007



May also be some diurnal warming variation

#### Bias: GOES-11 (Nighttime) December 16, 2007



Not much cold bias but warm in E

#### Bias: GOES-11 (Nighttime) December 21, 2007



Not so much temporal variation





• Improvement over RTG\_HR 1/12° analysis is immediate where data are available



- Improvement over RTG\_HR 1/12° analysis is immediate where data are available
- Reynolds "Daily" OI ¼° MW+IR analysis has advantage where cloud is persistent



- Improvement over RTG\_HR 1/12° analysis is immediate where data are available
- Reynolds Olv2 ¼° MW+IR analysis has advantage where cloud is persistent
- RTG is reference field, but may drift when data are infrequent/absent, so inclusion
  of MW data in POES-GOES must be done with care (or also included in RTG)



- Improvement over RTG\_HR 1/12° analysis is immediate where data are available
- Reynolds Olv2 ¼° MW+IR analysis has advantage where cloud is persistent
- RTG is reference field, but may drift when data are infrequent/absent, so inclusion
  of MW data in POES-GOES must be done with care (or also included in RTG)



• Data-adaptive correlation length scales give reasonable balance between noise reduction and detail preservation

Bias & S.D. trends for December 2007



- ~1150 buoy average SSTs per day
  - -0.18  $\pm$  0.47 K (-0.17  $\pm$  0.34 K)

Bias & S.D. trends for December 2007, 30N -> 90N



- ~1150 buoy average SSTs per day
- NH  $\sim$ 300/dy  $\sim$ 0.24  $\pm$  0.56 K ( $\sim$ 0.25  $\pm$  0.39 K)
- -0.18  $\pm$  0.47 K (-0.17  $\pm$  0.34 K)

Bias & S.D. trends for December 2007, 30S -> 30N



~1150 buoy average SSTs per day

- -0.18 ± 0.47 K (-0.17 ± 0.34 K)

NH  $\sim$ 300/dy -0.24  $\pm$  0.56 K (-0.25  $\pm$  0.39 K)

TR  $\sim$ 550/dy -0.17  $\pm$  0.46 K (-0.15  $\pm$  0.33 K)

Bias & S.D. trends for December 2007, 90S -> 30S



~1150 buoy average SSTs per day

$$-$$
 -0.18  $\pm$  0.47 K (-0.17  $\pm$  0.34 K)

NH  $\sim$ 300/dy  $-0.24 \pm 0.56$  K ( $-0.25 \pm 0.39$  K)

TR  $\sim$ 550/dy -0.17  $\pm$  0.46 K (-0.15  $\pm$  0.33 K)

SH ~300/dy -0.14  $\pm$  0.38 K (-0.14  $\pm$  0.31 K) STAR Science Forum

July 10, 2008



- Point-for-point comparison with RTG\_HR shows S.D. of 0.45 K
  - Note: Bias gradually adjusting to zero
- Comparison with Reynolds ¼° daily OI has S.D. of 0.65 K



- Point-for-point comparison with RTG\_HR shows S.D. of 0.45 K
  - Note: Bias gradually adjusting to zero
- Comparison with Reynolds ¼° daily OI has S.D. of 0.65 K



- Point-for-point comparison with RTG\_HR shows S.D. of 0.45 K
  - Note: Bias gradually adjusting to zero
- Comparison with Reynolds ¼° daily OI has S.D. of 0.65 K



- Point-for-point comparison with RTG\_HR shows S.D. of 0.45 K
  - Note: Bias gradually adjusting to zero
- Comparison with Reynolds ¼° daily OI has S.D. of 0.65 K

#### MW Data for December 31 2007



Statistics:
Min: 9.90
Max: 33.30
Mean: 23.19
Rms: 2.82





## Comparison of gradients



## Comparison of gradients



# Regional Comparison



# Regional Comparison



#### Quick look c.f. other "hi-res" global SST analyses



- It seems that the correlation length scales for the OSTIA analysis are not sufficient to permit mesoscale oceanic features to be well-resolved
- GOES data are not currently being ingested by the ODYSSEA system, which is also not computationally efficient enough to permit inclusion of full analysis of separate datasets

## Geostationary coverage



## Summary

- POES-GOES Analysis has following features
  - Rigorous multi-scale with Kalman Filter emulation is fast & efficient (27 mins/day)
  - Preprocessing currently takes much longer (~2 hours) but can be parallelized (and probably optimized)
  - Data-adaptive correlation length strikes reasonable balance between feature preservation and noise suppression
- Future plans include
  - Add MW data (with care)
  - Include other geostationary SST data (MT-SAT & Meteosat-9)
  - GHRSST L4 product
  - 1/20° global version (CoastWatch)
  - 1-km regional (nested multi-scale)
    - Coral Reef Watch
- Looking forward to reducing errors in input data
  - Especially calibration cycling in GOES & MT-SAT
  - Physical retrieval